The Danforth's short tail mutation acts cell autonomously in notochord cells and ventral hindgut endoderm.

نویسندگان

  • R Maatman
  • J Zachgo
  • A Gossler
چکیده

Danforth's short tail (Sd) is a semidominant mutation in mouse affecting the axial skeleton and urogenital system. The notochord is the first visibly abnormal structure in mutant embryos, and disintegrates beginning around embryonic day 9.5 along its entire length, suggesting an essential role for Sd in notochord development and maintenance. Here, we report on the fate of Sd/+ and Sd/Sd cells in chimeric embryos. Up to day 9-9.5, Sd cells contributed efficiently to the notochord of chimeric embryos. In advanced day 9.5 embryos, Sd cells were less abundant in the posterior-most region of the notochord and in the notochordal plate. During subsequent development, Sd cells were specifically lost from the notochord and replaced by wild-type cells. In Sd/+<-->+/+ chimeras, the notochord appeared histologically and functionally normal, leading to a rescue of the mutant phenotype. However, strong Sd/Sd<-->+/+ chimeras showed malformations of the axial skeleton and urogenital system. All Sd/Sd<-->+/+ chimeras with malformations of the axial skeleton also had kidney defects, whereas chimeras without vertebral column defects had highly chimeric kidneys that appeared normal, suggesting that the urogenital malformations arise secondarily to impaired posterior development caused by the degenerating notochord. Sd mutant cells also were specifically absent from the ventral portion of the hindgut, whereas they contributed efficiently to the dorsal region, implying the existence of distinct cell populations in the dorsal and ventral hindgut. Our findings demonstrate that the Sd mutation acts cell autonomously in cells of the notochord and ventral hind gut. Sd leads to the degeneration of notochord cells and the number or allocation of notochord precursors from the tail bud to the notochordal plate seems impaired, whereas notochord formation from the node appears to be unaffected.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Retrotransposon Insertion in the 5′ Regulatory Domain of Ptf1a Results in Ectopic Gene Expression and Multiple Congenital Defects in Danforth's Short Tail Mouse

Danforth's short tail mutant (Sd) mouse, first described in 1930, is a classic spontaneous mutant exhibiting defects of the axial skeleton, hindgut, and urogenital system. We used meiotic mapping in 1,497 segregants to localize the mutation to a 42.8-kb intergenic segment on chromosome 2. Resequencing of this region identified an 8.5-kb early retrotransposon (ETn) insertion within the highly co...

متن کامل

Ectopic Expression of Ptf1a Induces Spinal Defects, Urogenital Defects, and Anorectal Malformations in Danforth's Short Tail Mice

Danforth's short tail (Sd) is a semidominant mutation on mouse chromosome 2, characterized by spinal defects, urogenital defects, and anorectal malformations. However, the gene responsible for the Sd phenotype was unknown. In this study, we identified the molecular basis of the Sd mutation. By positional cloning, we identified the insertion of an early transposon in the Sd candidate locus appro...

متن کامل

Synergistic action of HNF-3 and Brachyury in the notochord differentiation of ascidian embryos.

In vertebrate embryos, the class I subtype forkhead domain gene HNF-3 is essential for the formation of the endoderm, notochord and overlying ventral neural tube. In ascidian embryos, Brachyury is involved in the formation of the notochord. Although the results of previous studies imply a role of HNF-3 in notochord differentiation in ascidian embryos, no experiments have been carried out to add...

متن کامل

Foxa2 mediates critical functions of prechordal plate in patterning and morphogenesis and is cell autonomously required for early ventral endoderm morphogenesis

Axial mesendoderm is comprised of prechordal plate and notochord. Lack of a suitable Cre driver has hampered the ability to genetically dissect the requirement for each of these components, or genes expressed within them, to anterior patterning. Here, we have utilized Isl1-Cre to investigate roles of the winged helix transcription factor Foxa2 specifically in prechordal plate and ventral endode...

متن کامل

The zebrafish T-box genes no tail and spadetail are required for development of trunk and tail mesoderm and medial floor plate.

T-box genes encode transcriptional regulators that control many aspects of embryonic development. Here, we demonstrate that the mesodermally expressed zebrafish spadetail (spt)/VegT and no tail (ntl)/Brachyury T-box genes are semi-redundantly and cell-autonomously required for formation of all trunk and tail mesoderm. Despite the lack of posterior mesoderm in spt(-);ntl(-) embryos, dorsal-ventr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Development

دوره 124 20  شماره 

صفحات  -

تاریخ انتشار 1997